What distinguishes GroEL substrates from other Escherichia coli proteins?

نویسندگان

  • Ariel Azia
  • Ron Unger
  • Amnon Horovitz
چکیده

Experimental studies and theoretical considerations have shown that only a small subset of Escherichia coli proteins fold in vivo with the help of the GroE chaperone system. These proteins, termed GroE substrates, have been divided into three classes: (a) proteins that can fold independently, but are found to associate with GroEL; (b) proteins that require GroE when the cell is under stress; and (c) 'obligatory' proteins that require GroE assistance even under normal conditions. It remains unclear, however, why some proteins need GroE and others do not. Here, we review experimental and computational studies that addressed this question by comparing the sequences and structural, biophysical and evolutionary properties of GroE substrates with those of nonsubstrates. In general, obligatory substrates are found to have lower folding propensities and be more aggregation prone. GroE substrates are also more conserved than other proteins and tend to utilize more optimal codons, but this latter feature is less apparent for obligatory substrates. There is no evidence, however, for any specific sequence signatures although there is a tendency for sequence periodicity. Our review shows that reliable sequence- or structure-based predictions of GroE dependency remain a challenge. We suggest that the different classes of GroE substrates be studied separately and that proper control test sets (e.g. TIM barrel proteins that need GroE for folding versus TIM barrels that fold independently) be used more extensively in such studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets

Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...

متن کامل

Proteome-wide Analysis of Chaperonin-Dependent Protein Folding in Escherichia coli

The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and Dn...

متن کامل

Cloning and Expression of Heat Shock Protein 60kDa Gene from Brucella melitensis as Subunit Vaccine

Brucellosis is caused by the bacterium Brucella and affects various domestic and wild species. GroEL (Heat Shock Protein 60kDa) as one of the major antigens that stimulate the immune system, increases Brucella survival. The aim of the current study was to clone and express GroEL in Escherichia coli in order to design subunit vaccine. Amplifying was performed using specific primers. The full-len...

متن کامل

A more precise characterization of chaperonin substrates

MOTIVATION Molecular chaperones prevent the aggregation of their substrate proteins and thereby ensure that they reach their functional native state. The bacterial GroEL/ES chaperonin system is understood in great detail on a structural, mechanistic and functional level; its interactors in Escherichia coli have been identified and characterized. However, a long-standing question in the field is...

متن کامل

Formation in vitro of complexes between an abnormal fusion protein and the heat shock proteins from Escherichia coli and yeast mitochondria.

Heat shock proteins (HSPs) of the Hsp70 and GroEL families associate with a variety of cell proteins in vivo. However, the formation of such complexes has not been systematically studied. A 31-kDa fusion protein (CRAG), which contains 12 residues of cro repressor, truncated protein A, and 14 residues of beta-galactosidase, when expressed in Escherichia coli, was found in complexes with DnaK, Gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2012